
Ryan Saptarshi Ray Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.49-52

 www.ijera.com 49|P a g e

Distributed Shared Memory – A Survey and Implementation

Using Openshmem

Ryan Saptarshi Ray, Utpal Kumar Ray, Ashish Anand, Dr. Parama Bhaumik
Junior Research Fellow Department of Information Technology, Jadavpur University Kolkata, India

Assistant Professor Department of Information Technology, Jadavpur University Kolkata, India

M. E. Software Engineering Student Department of Information Technology, Jadavpur University Kolkata,

India

Assistant Professor Department of Information Technology, Jadavpur University Kolkata, India

Abstract
Parallel programs nowadays are written either in multiprocessor or multicomputer environment. Both these

concepts suffer from some problems. Distributed Shared Memory (DSM) systems is a new and attractive area of

research recently, which combines the advantages of both shared-memory parallel processors (multiprocessors)

and distributed systems (multi-computers). An overview of DSM is given in the first part of the paper. Later we

have shown how parallel programs can be implemented in DSM environment using Open SHMEM.

I. Introduction
Parallel Processing

The past few years have marked the start of a

historic transition from sequential to parallel

computation. The necessity to write parallel programs

is increasing as systems are getting more complex

while processor speed increases are slowing down.

Generally one has the idea that a program will run

faster if one buys a next-generation processor. But

currently that is not the case. While the next-

generation chip will have more CPUs, each

individual CPU will be no faster than the previous

year’s model. If one wants programs to run faster,

one must learn to write parallel programs as currently

multi-core processors are becoming more and more

popular. Parallel Programming means using multiple

computing resources like processors for

programming so that the time required to perform

computations is reduced. Parallel Processing

Systems are designed to speed up the execution of

programs by dividing the program into multiple

fragments and processing these fragments

simultaneously. Parallel systems deal with the

simultaneous use of multiple computer resources.

Parallel systems can be - a single computer with

multiple processors, or a number

of computers connected by a network to form a

parallel processing cluster or a combination of both.

Cluster computing has become very common for

applications that exhibit large amount of control

parallelism. Concurrent execution of batch jobs and

parallel servicing of web and other requests [1] as in

Condor [2], which achieve very high throughput rates

have become very popular. Some workloads can

benefit from concurrently running processes on

separate machines and can achieve speedup on

networks of workstation using cluster technologies

such as the MPI programming interface [3]. Under

MPI, machines may explicitly pass messages, but do

not share variables or memory regions directly.

Parallel computing systems usually fall into two

large classifications, according to their memory

system organization: shared and distributed-memory

systems.

Multiprocessor Environment

A shared-memory system [4] (often called a

tightly coupled multiprocessor) makes a global

physical memory equally accessible to all processors.

These systems enable simple data sharing through a

uniform mechanism of reading and writing shared

structures in the common memory. This system has

advantages of ease of programming and portability.

However, shared-memory multiprocessors typically

suffer from increased contention and longer latencies

in accessing the shared memory, which degrades

peak performance and limits scalability compared to

distributed systems. Memory system design also

tends to be complex.

Multicomputer Environment

In contrast, a distributed-memory system (often

called a multicomputer) consists of multiple

independent processing nodes with local memory

modules, connected by a general interconnection

network. The scalable nature of distributed-memory

systems makes systems with very high computing

power possible. However, communication between

processes residing on different nodes involves a

message-passing model that requires explicit use of

send/receive primitives. Also, process migration

imposes problems because of different address

RESEARCH ARTICLE OPEN ACCESS

Ryan Saptarshi Ray Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.49-52

 www.ijera.com 50|P a g e

spaces. Therefore, compared to shared-memory

systems, hardware problems are easier and software

problems more complex in distributed-memory

systems. [5]

Distributed shared memory (DSM) is an

alternative to the above mentioned approaches that

operates over networks of workstations. DSM

combines the advantages of shared memory parallel

computer and distributed systems. [5],[6]

II. DSM – An Overview
In early days of distributed computing, it was

implicitly assumed that programs on machines with

no physically shared memory obviously ran in

different address spaces. In 1986, Kai Li proposed a

different scheme in his PhD dissertation entitled,

“Shared Virtual Memory on loosely Coupled

Microprocessors”, it opened up a new area of

research that is known as Distributed Shared Memory

(DSM) systems. [7]

A DSM system logically implements the shared-

memory model on a physically distributed-memory

system. DSM is a model of inter-process

communications in distributed system. In DSM,

processes running on separate hosts can access a

shared address space. The underlying DSM system

provides its clients with a shared, coherent memory

address space. Each client can access any memory

location in the shared address space at any time and

see the value last written by any client. The primary

advantage of DSM is the simpler abstraction it

provides to the application programmer. The

communication mechanism is entirely hidden from

the application writer so that the programmer does

not have to be conscious of data movements between

processes and complex data structures can be passed

by reference. [8]

DSM can be implemented in hardware

(Hardware DSM) as well as software (Software

DSM). Hardware implementation requires addition of

special network interfaces and cache coherence

circuits to the system to make remote memory access

look like local memory access. So, Hardware DSM is

very expensive. Software implementation is

advantageous as in this case only software has to be

installed. In Software DSM a software layer is added

between the OS and application layers and kernel of

OS may or may not be modified. Software DSM is

more widely used as it is cheaper and easier to

implement than Hardware DSM.

III. DSM – Pros and Cons Pros
Because of the combined advantages of the

shared-memory and distributed systems, DSM

approach is a viable solution for large-scale, high-

performance systems with a reduced cost of parallel

software development. [5]

In multiprocessor systems there is an upper limit

to the number of processors which can be added to a

single system. But in DSM according to requirement

any number of systems can be added. DSM systems

are also cheaper and more scalable than both

multiprocessors and multi-computer systems. In

DSM message passing overhead is much less than

multi-computer systems.

Cons

Consistency can be an important issue in DSM

as different processors access, cache and update a

shared single memory space. Partial failures or/and

lack of global state view can also lead to

inconsistency.

IV. Implementation of DSM using

OpenSHMEM
An Overview – OpenSHMEM

OpenSHMEM is a standard for SHMEM library

implementations which can be used to write parallel

programs in DSM environment. SHMEM is a

communications library that is used for Partitioned

Global Address Space (PGAS) [9] style

programming. The key features of SHMEM include

one-sided point-to-point and collective

communication, a shared memory view, and atomic

operations that operate on globally visible or

“symmetric” variables in the program. [10]

Code Example

The code below shows implementation of

parallel programs in DSM environment using

OpenSHMEM.

#include <stdio.h>

#include <shmem.h> //SHMEM library is included

#define LIMIT 7

long pSync[SHMEM_BARRIER_SYNC_SIZE];

int

pWrk[SHMEM_REDUCE_MIN_WRKDATA_SIZE

];

int global_data[LIMIT] = {1,2,3,4,5,6,7};

int result[LIMIT];

int main(int argc, char **argv)

{

 int rank, size, number, i, j;

 int local_data[LIMIT];

 start_pes(0);

 size = num_pes();

 rank = my_pe();

 shmem_barrier(0,0,3,pSync);

 if (rank == 0)

 {

 for(i=0; i<LIMIT; i++)

 local_data[i] = 0;

 //Local array is initialized

 }

Ryan Saptarshi Ray Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.49-52

 www.ijera.com 51|P a g e

 else

 {

 if (rank%2 == 1)

 {

 for(i=0; i<LIMIT; i++)

 {

 local_data[i] = global_data[i] + 1;

 }

 }shmem_quiet();

 if(rank%2 == 0)

 {

 for(i=0; i<LIMIT; i++)

 {

 local_data[i] = global_data[i] - 1;

 }

 }shmem_quiet();

 }

 shmem_int_sum_to_all(result,

local_data,LIMIT,0,0,size, pWrk,pSync);

 shmem_quiet();

 if (rank == 0)

 {

 printf("Updated Data\n");

 for(i=0; i<LIMIT; i++)

 printf("%3d", result[i]);

 printf("\n");

 }

 shmem_barrier_all();

 return 0;

}

In the above program, an array of integers is taken as

input. Increment operation and decrement operation

are performed on the array by multiple Processing

Elements (PEs) in the network. PEs with odd rank

perform increment and those with even rank perform

decrement on the array. Finally sum of these values is

shown as output.

Various functions of SHMEM library are used here.

Below we are giving a brief overview of these

functions.

start_pes() – This routine should be the first

statement in a SHMEM parallel program. It allocates

a block of memory from the symmetric heap.

num_pes() – This routine returns the total number of

PEs running in an application.

my_pe() – This routine returns the processing

element (PE) number of the calling PE. It accepts no

arguments. The result is an integer between 0 and

npes - 1, where npes is the total number of PEs

executing the current program.

shmem_barrier(PE_start, logPE_stride, PE_size,

pSync) – This routine does not return until the subset

of PEs specified by PE_start,

logPE_stride and PE_size, has entered this routine at

the same point of the execution path. The arguments

are as follows:

PE_start – It is the lowest virtual PE number of the

active set of PEs. PE_start must be of type integer.

logPE_stride - The log (base 2) of the stride between

consecutive virtual PE numbers in the active set.

logPE_stride must be of type integer.

PE_size – It is the number of PEs in the active set.

PE_size must be of type integer. pSync - It is a

symmetric work array.

shmem_quiet() – It is one of the most useful routines

as it ensures ordering of delivery of several remote

operations.

shmem_int_sum_to_all(target, source, nreduce,

PE_start, logPE_stride, PE_size, pWrk, pSync) – It

is a reduction routine which computes one or more

reductions across symmetric arrays on multiple

virtual PEs. Some of the arguments are same as

mentioned above and the rest are as follows: target –

It is a symmetric array of length nreduce elements to

receive the results of the reduction operations.

source – It is a symmetric array, of length nreduce

elements, that contains one element for each separate

reduction operation. The source argument must have

the same data type as target.

nreduce – It is the number of elements in the target

and source arrays.

pWrk – It is a symmetric work array. The pWrk

argument must have the same data type as target.

shmem_barrier_all() – This routine does not return

until all other PEs have entered this routine at the

same point of the execution path.

The code is compiled as following:

$oshcc <filename> -o <object_filename>

The code is executed as following:

$oshrun –np <PE_size> --hostfile <hostfile_name>

<object_filename>

Here hostfile is a file containing the ip addresses of

all PEs in the network. [13]

Output of the above code for PE_size = 3 was as

shown below:

2 4 6 8 10 12 14

V. STM in DSM Environment
Software Transactional Memory (STM) [12] is a

promising new approach to programming shared-

memory parallel processors. It is an alternative

approach to locks for solving the problem of

synchronization in parallel programs. It allows

portions of a program to execute in isolation, without

regard to other, concurrently executing tasks. A

programmer can reason about the correctness of code

within a transaction and need not worry about

complex interactions with other, concurrently

executing parts of the program. Up till now STM

codes have been executed in multiprocessor

environment only. Many works are going on to

implement STM in DSM environment (such as

Atomic RMI) and it is expected that this will lead to

improved performance of STM. [11] Atomic RMI is

a distributed transactional memory frame-work that

supports the control flow model of execution. Atomic

Ryan Saptarshi Ray Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.49-52

 www.ijera.com 52|P a g e

RMI extends Java RMI with distributed transactions

that can run on many Java virtual machines located

on different network nodes which can hosts a number

shared remote objects.

VI. Conclusion
The main objective of this paper was to provide a

description of the Distributed Shared Memory

systems. A special attempt was made to provide an

example of implementation of parallel programs in

DSM environment using OpenSHMEM. From our

point of view it seems further works in exploring and

implementing DSM systems to achieve improved

performance is quite promising.

References
[1]. Luiz Andre Barroso, Jeffrey Dean, Urs

Holzle. “Web Search For a Planet: The

Google Cluster Architecture,” In: IEEE

Micro,23(2):22-28, March-April 2003.

[2]. M. Litzkow, M. Livny, and M. Mutka,

"Condor - A Hunter of Idle Workstations",

In: Proceedings of the 8th International

Conference of Distributed Computing

Systems, June, 1988.

[3]. Message Passing Interface (MPI) standard.

http://www-unix.mcs.anl.gov/mpi/

[4]. M. J. Flynn, Computer Architecture:

Pipelined and Parallel Processor Design,

Jones and Barlett, Boston, 1995.

[5]. Jelica Protic, Milo Tomasevic, Veljko

Milutinovic, “A Survey of Distributed

Shared Memory Systems” Proceedings of

the 28th Annual Hawaii International

Conference on System Sciences, 1995.

[6]. V. Lo, “Operating Systems Enhancements

for Distributed Shared Memory”, Advances

in Computers, Vol. 39, 1994.

[7]. Kai Li, “Shared Virtual Memory on Loosely

Coupled Microprocessors” PhD Thesis,

Yale University, September 1986.

[8]. S. Zhou, M. Stumn, Kai Li, D. Wortman,

“Heterogeneous Distributed Shared

Memory”, IEEE Trans. On Parallel and

Distributed Systems, 3(5), 1991.

[9]. PGAS Forum. http://www.pgas.org/

[10]. B. Chapman, T. Curtis, S. Pophale, S. Poole,

J. Kuehn, C. Koelbel, L. Smith “Introducing

OpenSHMEM, SHMEM for the PGAS

Community”, Partitioned Global Address

Space Conference 2010.

[11]. Konrad Siek, Paweł T. Wojciechowski,

“Atomic RMI: A Distributed Transactional

Memory Framework” Poznan University of

Technology, Poland, March 2015.

[12]. Ryan Saptarshi Ray, “Writing Lock-Free

Code using Software Transactional

Memory”, Department of IT, Jadavpur

University, 2012.

[13]. http://openshmem.org/site/Documentation/

Manpages/Browse

